

Agreement No. CE 51/2002 (DS)

Upgrading of Pillar Point Sewage Treatment Works - Investigation, Design and Construction

EIA Study Report

[January 2008]

	Name	Signature
Reviewed & Checked:	Amy Cheung	
Approved:	Josh Lam	////ww
		$\bigvee \mathcal{V}$

Version:

Final

Date: 30th January 2008

The information contained in this report is, to the best of our knowledge, correct at the time of printing. The interpretation and recommendations in the report are based on our experience, using reasonable professional skill and judgment, and based upon the information that was available to us. These interpretations and recommendations are not necessarily relevant to any aspect outside the restricted requirements of our brief. This report has been prepared for the sole and specific use of our client and ENSR accepts no responsibility for its use by others.

This report is copyright and may not be reproduced in whole or in part without prior written permission.

ENSR ASIA (HK) LTD

11/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 2893 1551 Fax: (852) 2891 0305

TABLE OF CONTENTS

1.	INTF	RODUCTION	1-1
	1.1	Background of the Project	1-1
	1.2	The Assignment	1-1
	1.3	Objectives of the Assignment	1-2
	1.4	Assessment Area	1-3
	1.5	Organisation of the Report	1-3
2.	PRO.	JECT DESCRIPTION	2-1
	2.1	Project Background	2-1
	2.2	Need of the Project	2-1
	2.3	Project Description	2-1
	2.4	Project Location	2-3
	2.5	Consideration of Sewage Treatment Options	2-3
	2.6	Comparison of Sewage Treatment Options	2-4
	2.7	Preliminary Layout and Process Flow Diagram	2-9
	2.8	Project Programme	2-10
	2.9	Interactions with Other Projects	2-10
	2.10	Construction Methods for the Upgrading Works	2-10
3.	AIR	QUALITY	3-1
	3.1	Introduction	3-1
	3.2	Environmental Legislations, Policies, Plans, Standards and Criteria	3-1
	3.3	Description of the Environment	3-2
	3.4	Air Sensitive Receivers	3-2
	3.5	Initial Assessment and Control Measures	3-3
	3.6	Prediction and Evaluation of Environmental Impacts	3-16
	3.7	Mitigation of Adverse Environmental Impacts	3-17
	3.8	Evaluation of Residual Impact	
	3.9	Environmental Monitoring and Audit	3-21
	3.10	Conclusions	
4.	WAT	TER QUALITY	4-1
	4.1	Introduction	4-1
	4.2	Water Sensitive Receivers	4-1

8.1

	4.3	Environmental Legislations, Policies, Plans, Standards and Criteria	4-1
	4.4	Description of the Environment	
	4.5	Assessment Methodology	
	4.6	Identification of Environmental Impacts	
	4.7	Prediction and Evaluation of Environmental Impacts	
	4.8	Mitigation of Adverse Environmental Impacts	
	4.9	Evaluation of Residual Impact	
	4.10	Environmental Monitoring and Audit	
	4.11	Conclusions	4-41
5.	NOT	USED	
6	MAR	RINE ECOLOGY	6-1
	6.1	Introduction	6-1
	6.2	Environmental Legislation, Policies, Plans, Standards and Criteria	6-1
	6.3	Assessment Methodology	6-2
	6.4	Description of Environment	6-3
	6.5	Ecological Value	6-21
	6.6	Identification and Evaluation of Environmental Impact	6-28
	6.7	Mitigation of Environmental Impact	6-32
	6.8	Evaluation of Residual Impact	6-32
	6.9	Environmental Monitoring and Auditing	6-32
	6.10	Conclusions	6-33
	6.11	References	6-33
7.	WAS	TE MANAGEMENT IMPLICATIONS	7- 1
	7.1	Introduction	7-1
	7.2	Environmental Legislations, Policies, Plans, Standards and Criteria	7-1
	7.3	Assessment Methodology	7-2
	7.4	Identification and Evaluation of Environmental Impacts	7-3
	7.5	Mitigation of Adverse Environmental Impacts	7-6
	7.6	Evaluation of Residual Impacts	7-10
	7.7	Environmental Monitoring and Audit	7-10
	7.8	Conclusion	7-10
8.	LAN	DSCAPE AND VISUAL IMPACT	8-1

Introduction8-1

11.

	8.2	Project Overview	8-2
	8.3	Review of Planning and Development Control Framework	
	8.4	Environmental Legislation and Standards	
	8.5	Assessment Methodology	
	8.6	Baseline Study	
	8.7	Landscape Impact Assessment (LIA)	
	8.8	Visual Impact Assessment (VIA)	
	8.9	Recommendation on Landscape and Visual Mitigation Measures	
	8.10	Conclusions	
9.	ENV	IRONMENTAL MONITORING & AUDIT	9-1
	9.1	Introduction	9-1
	9.2	Air Quality Impact	9-1
	9.3	Water Quality Impact	9-2
	9.4	Waste Management Implications	9-2
	9.5	Landscape and Visual Impact	9-2
10.	CON	CLUSIONS & SUMMARY OF ENVIRONMENTAL OUTCOMES	S 10-1
	10.1	Introduction	10-1
	10.2	Air Quality Impact	10-1
	10.3	Water Quality Impact	10-2
	10.4	Ecological Impact	10-3
	10.5	Waste Management Implications	10-3
	10.6	Landscape and Visual Impact	10-3
	10.7	Overall Conclusion	10-4

IMPLEMENTATION SCHEDULE......11-1

LIST OF APPENDICES

Appendix 2-1	Sewage Treatment Process options
Appendix 2-2	UV Irradiation
Appendix 2-3	Details and Technique for Bored Pile
Appendix 3-1	Calculation of Odour Emission Rate
Appendix 4-1	Near Field Modelling Results
Appendix 4-2	Assumed Effluent Flow and Concentrations for Pillar Point Effluent
Appendix 4-3	Pollution Loading Inventory for Deep Bay
Appendix 4-4	Model Results at Indicator Points for 2012 - Dry Season
Appendix 4-5	Model Results at Indicator Points for 2012 - Wet Season
Appendix 4-6	Model Results at Indicator Points for UDS – Dry Season
Appendix 4-7	Model Results at Indicator Points for UDS – Wet Season
Appendix 4-8	Emergency Response Procedures
Appendix 6.1	Photographic Records of Representative Habitats and Species of
	Conservation Interest
Appendix 6.2	Relative Abundance (%) of Major Taxa at 6 Study Sites from HATS EEFS
	WP9 (2004)
Appendix 6.3	Relative Biomass (%) of Major Taxa in the Study Sites from HATS EEFS
	WP9 (2004)
Appendix 6.4	Relative Abundance of the 5 Most Dominant Species at East Site from HATS
	EEFS WP9 (2004)
Appendix 6.5	Relative Biomass of the 5 Most Dominant Species at Each Sampling Site
	from HATS EEFS WP9 (2004)
Appendix 6.6	Community Structure of Sandy Bay from HATS EEFS WP9 (2004)
Appendix 6.7	List of Coral Species found in Ap Lei Chau and Sandy Bay and their
	Conservation Status from HATS EEFS WP9 (2004) and AFCD (2005)
Appendix 7-1	ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction
	and Demolition Materials"

List of Tables

Table 2.1	Projected ADWF and PWWF for PPSTW Upgrading
Table 2.2	Corrected Pollution Loads for PPSTW Upgrading
Table 2.3	Recommended Effluent Standards for Upgraded PPSTW
Table 2.4	Shortlisting of Promising Processes
Table 3.1	Hong Kong Air Quality Objectives

Table 3.2	Background Air Quality
Table 3.3	Details of Representative Air Sensitive Receivers
Table 3.4	Potential Odour Sources of Existing Treatment Facilities
Table 3.5	Potential Odour Sources of New Sewage Treatment Facilities after Upgrading
Table 3.6	Odour Emission Rate of Upgraded PPSTW (Unmitigated)
Table 3.7	Conversion Factors to 5-second Mean Concentration
Table 3.8	Predicted Unmitigated Odour Levels at ASRs after PPSTW Upgrading
Table 3.9	Odour Emission Rate of Upgraded PPSTW (Mitigated)
Table 3.10	Predicted Mitigated Odour levels at ASRs after PPSTW Upgrading
Table 4.1	Summary of Water Quality Objectives for North Western WCZ
Table 4.2	Summary of Water Quality Objectives for Western Buffer WCZ
Table 4.3	Summary of Water Quality Objectives for Deep Bay Water Control Zone
Table 4.4	WSD Standards at Flushing Water Intakes
Table 4.5	Not Used
Table 4.6	Baseline Water Quality Condition for North Western WCZ in 2005
Table 4.7	Baseline Water Quality Condition for Western Buffer WCZ in 2005
Table 4.8	Baseline Water Quality Condition for Deep Bay WCZ in 2005
Table 4.9	Typical Hourly Flow Pattern for the Project Effluent
Table 4.10	Design Influent and Effluent TSS and BOD5 of the Upgraded PPSTW
Table 4.11	Not Used
Table 4.12	Comparison of Effluent E.coli Discharge Standards for Existing CEPT Plants
	in Hong Kong
Table 4.13	Assumed Effluent Loadings from the Upgraded PPSTW
Table 4.14	Assumed Effluent Quality of Secondary Treatment with Nitrogen Removal
	and Disinfection
Table 4.15	Modelling Scenarios for Emergency Discharge of Untreated Effluent from
	PPSTW
Table 4.16	Modelling Scenarios for Emergency Bypass of Treated Effluent from PPSTW
Table 4.17	Coastal Developments to be Incorporated in the 2012 and UDS Coastline
	Configurations
Table 4.18	Occurrence and Distribution of Red Tides in Hong Kong
Table 6.4.1	The vertical zonation of abundant invertebrates recorded in Sandy Bay
	intertidal rocky shore
Table 6.5.1	Ecological value of marine benthos within potential impacted areas (Western
	Buffer and Northwestern WCZs)
Table 6.5.2	Ecological value of coral community in potentially impacted areas (Western
	Buffer and Northwestern WCZs)

Table 6.5.3	Ecological value of intertidal community in potentially impacted areas (Western Buffer and Northwestern WCZs)
Table 6.5.4	Ecological value of Artificial Reefs in potentially impacted areas (Western
Table 6.5.5	Buffer and Northwestern WCZs) Ecological value of Chinese White Dolphin within potentially impacted areas (Western Buffer and Northwestern WCZs)
Table 6.5.6	Ecological value of Horseshoe Crab within potentially impacted areas (Western Buffer and Northwestern WCZs)
Table 6.5.7	Ecological value of Seagrass within potentially impacted areas (Western Buffer and Northwestern WCZs)
Table 6.6.1	Potential ecological impacts on Benthos habitats within potential impacted areas (Western Buffer and Northwestern WCZs)
Table 6.6.2	Potential ecological impacts of Coral community within potential impacted areas (Western Buffer and Northwestern WCZs)
Table 6.6.3	Potential ecological impacts of Intertidal communities within potential impacted areas (Western Buffer and Northwestern WCZs)
Table 6.6.4	Ecological impact on artificial reefs within potential impacted areas (Western Buffer and Northwestern WCZs)
Table 6.6.5	Ecological impact of Chinese White Dolphin within potential impacted areas (Western Buffer and Northwestern WCZs)
Table 7.1	Summary of Waste Handling Procedures and Disposal Routes for Construction Phase
Table 8.1	Illustration of the Sensitivity of LRs in Study area
Table 8.2	Identity of key visual sensitive receivers (VSRs) and their sensitivity to change
Table 8.3	Visual sensitive receivers (VSRs) and their magnitude of impacts
Table 8.4	Significance of landscape impacts in the construction and operational phases (Note: All impacts adverse unless otherwise noted. Only those resources or character areas that are impacted are listed in the table - resources not impacted are not listed.)
Table 8.5	Significance of visual impacts in the construction and operational phases (Note: All impacts adverse unless otherwise noted. Only those VSRs that are impacted are listed in the table - VSRs not impacted are not listed.)
Table 8.6	Proposed Landscape and Visual Mitigation Measures in Construction Phase
Table 8.7	Proposed Landscape and Visual Mitigation Measures in Operation Phase
Table 10.1	Summary of Key Environmental Outcomes / Benefits
Table 11.1	Implementation Schedule for Air Quality Impact

Table 11.2	Implementation Schedule for Water Quality Impact
Table 11.3	Implementation Schedule for Waste Management Implications
Table 11.4	Implementation Schedule for Landscape and Visual Impact

List of Figures

Figure 2.1	Location Plan
Figure 2.2	Existing Sewage Treatment Plant
Figure 2.3	Layout Plan of Upgraded PPSTW
Figure 2.4	Process Flow Schematic Diagram
Figure 3.1	Locations of Air Quality Sensitive Receivers
Figure 3.2	Locations of Potential Odour Emission Sources of Pillar Point Sewage Treatment Works
Figure 3.3	Recommended Odour Mitigation Measures
Figure 3.4	Contours of Mitigated Odour Concentration at 1.5m above ground level
Figure 4.1	Locations of Water Quality Sensitive Receivers
Figure 4.2	Not Used
Figure 4.3	Not Used
Figure 4.4	Ultimate Coastline Configurations
Figure 4.5	10 Percentile Depth-averaged Dissolved Oxygen – Normal Operation - Overview
Figure 4.6	10 Percentile Bottom Dissolved Oxygen - Normal Operation - Overview
Figure 4.7	Arithmetic Mean Depth-averaged Total Inorganic Nitrogen - Normal
	Operation – Overview
Figure 4.8	Arithmetic Mean Depth-averaged Suspended Solids - Normal Operation -
	Overview
Figure 4.9	Arithmetic Mean Depth-averaged Unionized Ammonia - Normal Operation -
	Overview
Figure 4.10	Geometric Mean Depth-averaged E.coli Levels - Normal Operation -
	Overview
Figure 4.11	Arithmetic Mean Depth-averaged 5-day Biochemical Oxygen Demand -
	Normal Operation – Overview
Figure 4.12	Not Used
Figure 4.13	Not Used
Figure 4.14	10 Percentile Depth-averaged Dissolved Oxygen – Normal Operation – Close
	up at North Western WCZ
Figure 4.15	10 Percentile Bottom Dissolved Oxygen - Normal Operation - Close up at
	North Western WCZ
Figure 4.16	Arithmetic Mean Depth-averaged Total Inorganic Nitrogen - Normal
	Operation – Close up at North Western WCZ
Figure 4.17	Arithmetic Mean Depth-averaged Suspended Solids - Normal Operation -

- Close up at North Western WCZ
- Figure 4.18 Arithmetic Mean Depth-averaged Unionized Ammonia Normal Operation Close up at North Western WCZ
- Figure 4.19 Geometric Mean Depth-averaged *E.coli* Levels Normal Operation Close up at North Western WCZ
- Figure 4.20 Arithmetic Mean Depth-averaged 5-day Biochemical Oxygen Demand Normal Operation Close up at North Western WCZ
- Figure 4.21 Not Used
- Figure 4.22 Not Used
- Figure 4.23 10 Percentile Depth-averaged Dissolved Oxygen Normal Operation Change of Treatment Level 2012
- Figure 4.24 10 Percentile Depth-averaged Dissolved Oxygen Normal Operation Change of Treatment Level UDS
- Figure 4.25 10 Percentile Bottom Dissolved Oxygen Normal Operation Change of Treatment Level 2012
- Figure 4.26 10 Percentile Bottom Dissolved Oxygen Normal Operation Change of Treatment Level UDS
- Figure 4.27 Arithmetic Mean Depth-averaged Total Inorganic Nitrogen Normal Operation Change of Treatment Level 2012
- Figure 4.28 Arithmetic Mean Depth-averaged Total Inorganic Nitrogen Normal Operation Change of Treatment Level UDS
- Figure 4.29 Arithmetic Mean Depth-averaged Suspended Solids Normal Operation Change of Treatment Level 2012
- Figure 4.30 Arithmetic Mean Depth-averaged Suspended Solids Normal Operation Change of Treatment Level UDS
- Figure 4.31 Arithmetic Mean Depth-averaged Unionized Ammonia Normal Operation Change of Treatment Level 2012
- Figure 4.32 Arithmetic Mean Depth-averaged Unionized Ammonia Normal Operation Change of Treatment Level UDS
- Figure 4.33 Geometric Mean Depth-averaged *E.coli* Levels Normal Operation Change of Treatment Level 2012
- Figure 4.34 Geometric Mean Depth-averaged *E.coli* Levels Normal Operation Change of Treatment Level UDS
- Figure 4.35 Arithmetic Mean Depth-averaged 5-day Biochemical Oxygen Demand Normal Operation Change of Treatment Level 2012
- Figure 4.36 Arithmetic Mean Depth-averaged 5-day Biochemical Oxygen Demand Normal Operation Change of Treatment Level UDS

- Figure 4.37 Minimum Depth-averaged Dissolved Oxygen Emergency Discharge at Twin Submarine Outfalls
- Figure 4.38 Minimum Bottom Dissolved Oxygen Emergency Discharge at Twin Submarine Outfalls
- Figure 4.39 Maximum Depth-averaged Suspended Solids Emergency Discharge at Twin Submarine Outfalls
- Figure 4.40 Maximum Depth-averaged *E.coli* Levels Emergency Discharge at Twin Submarine Outfalls
- Figure 4.41 Maximum Depth-averaged 5-day Biochemical Oxygen Demand Emergency Discharge at Twin Submarine Outfalls
- Figure 4.42 Minimum Depth-averaged Dissolved Oxygen Emergency Discharge at Bypass Location
- Figure 4.43 Minimum Bottom Dissolved Oxygen Emergency Discharge at Bypass Location
- Figure 4.44 Maximum Depth-averaged Suspended Solids Emergency Discharge at Bypass Location
- Figure 4.45 Maximum Depth-averaged *E.coli* Levels Emergency Discharge at Bypass Location
- Figure 4.46 Maximum Depth-averaged 5-day Biochemical Oxygen Demand Emergency Discharge at Bypass Location
- Figure 4.47 Maximum Depth-averaged Total Inorganic Nitrogen Emergency Discharge at Bypass Location
- Figure 4.48 Maximum Depth-averaged Unionized Ammonia Emergency Discharge at Bypass Location
- Figure 4.49 Emergency Discharge of Untreated Effluent at Twin Submarine Outfalls UDS Dry Season Dissolved Oxygen
- Figure 4.50 Emergency Discharge of Untreated Effluent at Twin Submarine Outfalls UDS Wet Season Dissolved Oxygen
- Figure 4.51 Emergency Discharge of Untreated Effluent at Twin Submarine Outfalls UDS Dry Season Suspended Solids
- Figure 4.52 Emergency Discharge of Untreated Effluent at Twin Submarine Outfalls UDS Wet Season Suspended Solids
- Figure 4.53 Emergency Discharge of Untreated Effluent at Twin Submarine Outfalls UDS Dry Season *E.coli*
- Figure 4.54 Emergency Discharge of Untreated Effluent at Twin Submarine Outfalls UDS Wet Season *E.coli*
- Figure 4.55 Emergency Discharge of Untreated Effluent at Twin Submarine Outfalls -

	UDS Dry Season – 5-day Biochemical Oxygen Demand
Figure 4.56	Emergency Discharge of Untreated Effluent at Twin Submarine Outfalls -
	UDS Wet Season – 5-day Biochemical Oxygen Demand
Figure 4.57	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Dry
	Season – Dissolved Oxygen
Figure 4.58	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Wet
	Season – Dissolved Oxygen
Figure 4.59	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Dry
	Season – Suspended Solids
Figure 4.60	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Wet
	Season – Suspended Solids
Figure 4.61	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Dry
	Season – E.coli
Figure 4.62	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Wet
	Season – E.coli
Figure 4.63	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Dry
	Season – 5-day Biochemical Oxygen Demand
Figure 4.64	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Wet
	Season – 5-day Biochemical Oxygen Demand
Figure 4.65	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Dry
	Season – Total Inorganic Nitrogen
Figure 4.66	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Wet
	Season – Total Inorganic Nitrogen
Figure 4.67	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Dry
	Season – Unionized Ammonia
Figure 4.68	Emergency Discharge of Untreated Effluent at Bypass Location - UDS Wet
	Season – Unionized Ammonia
Figure 4.69	Minimum Depth-averaged Dissolved Oxygen - Emergency Bypass of Treated
	Effluent
Figure 4.70	Minimum Bottom Dissolved Oxygen - Emergency Bypass of Treated Effluent
Figure 4.71	Maximum Depth-averaged Suspended Solids -Emergency Bypass of Treated
	Effluent
Figure 4.72	Maximum Depth-averaged E.coli Levels - Emergency Bypass of Treated
	Effluent
Figure 4.73	Maximum Depth-averaged 5-day Biochemical Oxygen Demand – Emergency
	Bypass of Treated Effluent
Figure 4.74	Maximum Depth-averaged Total Inorganic Nitrogen - Emergency Bypass of

	Treated Effluent
Figure 4.75	Maximum Depth-averaged Unionized Ammonia – Emergency Bypass of Treated Effluent
Figure 4.76	Not Used
Figure 4.77	Emergency Bypass of Treated Effluent – UDS Dry Season – Dissolved Oxygen
Figure 4.78	Emergency Bypass of Treated Effluent – UDS Wet Season – Dissolved Oxygen
Figure 4.79	Emergency Bypass of Treated Effluent – UDS Dry Season – Suspended Solids
Figure 4.80	Emergency Bypass of Treated Effluent – UDS Wet Season – Suspended Solids
Figure 4.81	Emergency Bypass of Treated Effluent – UDS Dry Season – E.coli
Figure 4.82	Emergency Bypass of Treated Effluent – UDS Wet Season – E.coli
Figure 4.83	Emergency Bypass of Treated Effluent – UDS Dry Season – 5-day Biochemical Oxygen Demand
Figure 4.84	Emergency Bypass of Treated Effluent – UDS Wet Season – 5-day
Figure 4.85	Biochemical Oxygen Demand Emergency Bypass of Treated Effluent – UDS Dry Season – Total Inorganic
	Nitrogen
Figure 4.86	Emergency Bypass of Treated Effluent – UDS Wet Season – Total Inorganic Nitrogen
Figure 4.87	Emergency Bypass of Treated Effluent – UDS Dry Season – Unionized Ammonia
Figure 4.88	Emergency Bypass of Treated Effluent – UDS Wet Season – Unionized Ammonia
Figure 4.89	Area with Water Quality Improvement and Approximate Location of Initial Dilution Zone
Figure 6.1	Locations of Ecological Resources
Figure 6.2	120 Sampling Stations on Marine Benthos
Figure 6.3	Survey Locations on Benthos and Intertidal Shores
Figure 6.4	Survey Locations on Coral Community
Figure 6.5	Seagrass and Horseshoe Crab Locations
Figure 6.6	Sightings of Chinese White Dolphin from Jefferson (2005)
Figure 6.7	Sightings of Chinese White Dolphin from Hung (2006)
Figure 6.8	Locations for the Records of Horseshoe Crab
Figure 8.1.1	Existing Aerial Photo
Figure 8.1.2	Planning & Development Framework (OZP)

Figure 8.2.1	Landscape Resource
Figure 8.2.2	Photos of Landscape Resource (Sheet 1 of 2)
Figure 8.2.3	Photos of Landscape Resource (Sheet 2 of 2)
Figure 8.3.1	Landscape Character Area
Figure 8.3.2	Photos of Landscape Character Area
Figure 8.4.1	Zone of Visual Influence & Visual Sensitive Receivers
Figure 8.4.2	Photos of Visual Sensitive Receivers Group
Figure 8.4.3	Views for Visual Sensitive Receivers (Sheet 1 of 2)
Figure 8.4.4	Views for Visual Sensitive Receivers (Sheet 2 of 2)
Figure 8.5.1	Residual Landscape Resource Impacts in Construction Phase
Figure 8.5.2	Residual Landscape Resource Impacts in Operation Phase
Figure 8.5.3	Residual Landscape Character Impacts in Construction Phase
Figure 8.5.4	Residual Landscape Character Impacts in Operation Phase
Figure 8.5.5	Residual Visual Impacts in Construction Phase
Figure 8.5.6	Residual Visual Impacts in Operation Phase
Figure 8.6.1	Landscape and Visual Mitigation Measures in Operation Phase
Figure 8.7.1	Photomontage – Residual Visual Impact for GIC1
Figure 8.7.2	Photomontage – Residual Visual Impact for OU1
Figure 8.9.1	Location of Transplanted Trees and Additional Compensatory Planting
Figure 8.9.2	Approximate Location of Existing Trees
Figure 8.9.3	Location of Affected Trees and Tree Assessment Schedule